Computing the Determinant and Smith Form of an Integer Matrix

نویسندگان

  • Wayne Eberly
  • Mark Giesbrecht
  • Gilles Villard
چکیده

A probabilistic algorithm is presented to find the determinant of a nonsingular, integer matrix. For a matrix A n n the algorithm requires O n3 5 logn 4 5 bit operations (assuming for now that entries in A have constant size) using standard matrix and integer arithmetic. Using asymptotically fast matrix arithmetic, a variant is described which requires O n2 2 log2 n loglogn bit operations, where two n n matrices can be multiplied with O n operations. The determinant is found by computing the Smith form of the integer matrix, an extremely useful canonical form in itself. Our algorithm is probabilistic of the Monte Carlo type. That is, it assumes a source of random bits and on any invocation of the algorithm there is a small probability of error.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Computing the Determinant and Smith Form of an Integer Matrix

A probabilistic algorithm is presented to find the determinant of a nonsingular, integer matrix. For a matrix A n n the algorithm requires O n3 5 logn 4 5 bit operations (assuming for now that entries in A have constant size) using standard matrix and integer arithmetic. Using asymptotically fast matrix arithmetic, a variant is described which requires O n2 θ 2 log2 n loglogn bit operations, wh...

متن کامل

Hermite and Smith Normal Forms ofTriangular Integer Matrices

This paper considers the problem of transforming a triangular integer input matrix to canonical Hermite and Smith normal form. We provide algorithms and prove deterministic running times for both transformation problems that are linear (hence optimal) in the matrix dimension. The algorithms are easily implemented, assume standard integer multiplication, and admit excellent performance in practi...

متن کامل

Computing Hermite and Smith normal forms of triangular integer matrices

This paper considers the problem of transforming a triangular integer input matrix to canonical Hermite and Smith normal form. We provide algorithms and prove deterministic running times for both transformation problems that are optimal in the matrix dimension. The algorithms are easily implemented, assume standard integer arithmetic, and admit excellent performance in practice. The results pre...

متن کامل

Computing the Smith Forms of Integer Matrices and Solving Related Problems

The Smith form of an integer matrix plays an important role in the study of algebraic group theory, homology group theory, systems theory, matrix equivalence, Diophantine systems, and control theory. Asymptotic complexity of the Smith form computation has been steadily improved in the past four decades. A group of algorithms for computing the Smith forms is available now. The best asymptotic al...

متن کامل

Exact computations on polynomial and integer matrices

One may consider that the algebraic complexity of basic linear algebra over an abstract field K is well known. Indeed, if ω is the exponent of matrix multiplication over K, then for instance computing the determinant, the matrix inverse, the rank or the characteristic polynomial of an n×n matrix over K can be done in O (̃n) operations in K. Here the soft “O” notation indicates some missing logar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000